

Genau. Richtig. Page 1/4

Genau. Richtig.										г	age 1/4	
Summary of EN 12975	Test Resul	ts,				Licence	Numb	er	011-75	660 R		
annex to Solar KEYMA	RK Certific	ate				Issued			2014-0	8-28		
Company holding the	Ako Tec Pro	duktions	resellscha	aft mhH		Country	German	,				
Brand (optional)	Ako Tec	uuntions	Sesensene	210 111011			www.a		eu			
Street, street number	Grundmühl	enweg 3				E-mail	info@a					
Postal Code / City, province	16278	Angermi	ünde			Tel/Fax	49	(0)3331 2	29 66 88/ (0)3212 12	76 490	
Collector Type (flat plate gla	azed/un-glaz	ed; evacı	iate tubu	lar)		Evacuate	ed tubula	r collecto	or			
Thermal / photo voltaic hyb				-		No						
Integration in the roof possi	ble ? (manuf	acturers o	declaratio	n)		No						
							Pow	er outpu	t per col	ector mo	dule	
		ure Aa)	_		4	AG		G =	= 1000 W			
		Aperture area (Aa)	Gross length	Gross width	Gross height	Gross area (AG)			Tm-Ta			
			P G				0 K	10 K	30 K	50 K	70 K	
Collector name		m²	mm	mm	mm	m²	W	W	W	W	W	
OEM Vario 2400-30 hp OEM Vario 1600-20 hp		3.05 2.03	2 208 2 208	2 247 1 495	115 115	4.96	2 144	2 075	1 927	1 767 1 176	1 595	
OEM Vario 800-10 hp		1.02	2 208	745	115	3.30 1.64	1 427 717	1 381 694	1 283 644	591	1 061 533	
OEM Vario 400-5 hp		0.51	2 208	373	115	0.82	359	347	322	295	267	
•												
		1										
		 				1						
		 				1			1			
		1				1			<u> </u>			
- 4						<u> </u>			<u> </u>			
Performance test method						ctor - ste	ady state	- outdoo	r	l 1		
Performance parameters re	lated to ape	rture	η0	a1	a2							
Units Test results - Flow rate and	fluid coo not	o 1	0.703	W/(m ² K) 2.224	W/(m ² K ²)							
			0.703	2.224					22			
Bi-directional incidence ang		Yes	100	200		values a				00%	00%	
Incidence angle modifiers K transversal direction	θ(θ1)	Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°	
Incidence angle modifiers K	0(01)	Kθ(θT)	1.02 10°	1.02 20°	1.02 30°	1.05 40°	1.05 50°	1.00 60°	0.73 70°	80°	0.00 90°	
longitudinal direction	O(OL)	Angle Κθ(θL)	1.00	1.00	0.99	0.98	0.97	0.94	0.88	80	0.00	
Stagnation temperature - V	loathar cand	. ,		1.00	0.55	0.50		0.54	0.00	°C	0.00	
· ·	veather cond	illions sec	e note z				Tstg					
Effective thermal capacity							ceff = C/		ī	kJ/(m²K)		
Max. intende operation ten	•	ee note 3	 				Tmax,op		300	°C		
Max. operation pressure - s	ee note 3						pmax,op	1	1000	kPa		
Pressure drop table - for a c	ollector fam	ily, the va	lues shal	l be for tl	he modu	le with h	ighest ΔP	per m² a	perture	area		
Flow rate	kg/(s m²)	0.014		0.042	0.056	0.083	0.111	0.139				
Pressure drop, ΔP	Pa	133	420	846	1412	2962	5070	7736	10960			
Optional weather data	Location				Link							
Testing Laboratory			inland En		d Umwel	t GmbH						
Website			uv.com						1			
Test report id. number			9_800_10h 9_2400_30	• •		Date of	test repo	rt	all 2010-	-07-28		
During the test GDIF/GTOT v	was alwaye b	•	0.08	and	0.85	<u> </u>						
_		ctween	0.08	and	۵.۵۵	<u> </u>						
*The collector was tested w		okoida al	oot to ==:	nimia- k	okoid - ··	ofloations	. Tha +	tod salle	otor!	العندي املنيي	the e-	
*The collector was tested w called Narva power tube with											the so	
performance will be the san											mal	
performance test with the c												
ps. formance test with the t	Chector OLIV	. vario 30	20 30 HP	asing a H	.o., c.,,,,	Circy Daci	SIGC FEIR	Jocor is gi	c.ii oii p	-bc 5 and		
		l. // *									, h	
Note 1 Flow rate	0.033	kg/(s m²)	Fluid	Water				TIOVA	Rheinland	nbH test	Sn	
Note 2 Irradiance, G = 1000) W/m²; Amb	ient tem	perature	, Ta=30 °	С			Energie ynd	Charles Gr	nbH		
	., ,							VAM G	1105 Köln			
Note 3 Given by manufactu	ırer						St	D-5	HOS NOM		_	
								Datashee	et version:	4.05, 2013	3-11-07	

DIN CERTCO ● Alboinstraße 56 ● 12103 Berlin, Germany

Genau. Richtig.

Page 2/4

Annual collector output based on EN 12975 Test Results,	Licence Number	011-7S660 R
annex to Solar KEYMARK Certificate	Issued	28.08.2014

		Α	nnua	l colle	ector	outpu	ıt kW	h/mo	dule					
					Locat	tion ar	nd coll	ector t	tempe	rature	(Tm)			
		Athens	\$		Davos			Stockholm			/ürzbu	rø		
Collector name		50°C	_	25°C						50°C				
OEM Vario 2400-30 hp	3 621	2 937	2 313	2 951	2 357	1 832	2 134	1 636	1 228	2 309	1 770	1 313		
OEM Vario 1600-20 hp	2 410	1 955	1 539	1 964	1 568	1 220	1 421	1 089	817	1 537	1 178	874		
OEM Vario 800-10 hp	1 211	982	773	987	788	613	714	547	411	772	592	439		
OEM Vario 400-5 hp	605	491	387	493	394	306	357	274	205	386	296	220		
	İ													

Collector mounting: Fixed or tracking Fixed; slope = latitude - 15° (rounded to nearest 5°)

Location	Latitude °	Gtot kWh/m²	Ta °C	Collector orientation or tracking mode
Athens	38	1 765	18.5	South, 25°
Davos	47	1 714	3.2	South, 30°
Stockholm	59	1 166	7.5	South, 45°
Würzburg	50	1 244	9.0	South, 35°

Gtot	Annual total irradiation on collector plane	kWh/m²
Та	Mean annual ambient air temperature	°C
Tm	Constant collector operating temperature (mean of in- and outlet temperatures)	°C

The calculation of the annual collector performance is performed with the official Solar Keymark spreadsheet tool ScenoCalc. The collector output is calculated hour by hour according to the efficiency parameters from the Keymark test using constant collector operating temperature (Tm). A detailed description of the calculations is available at http://www.sp.se/en/index/services/solar/ScenoCalc/Sidor/default.aspx.

DIN CERTCO • Alboinstraße 56 • 12103 Berlin, Germany
Tel: +49 30 7562-1131 • Fax: +49 30 7562-1141 • E-Mail: info@dincertco.de • www.dincertco.de

Datasheet version: 4.05, 2013-11-07 ScenoCalc version: Ver. 4.05 (Nov, 2013)

Genau. Richtig. Page 3/4

Summary of EN 12975						1								
	Test Resul	ts,				Licence	e Numb	er	011-75	660 R				
annex to Solar KEYMA	RK Certific	ate				Issued			2014-0	8-28				
Company holding the	Ako Tec Pro	duktionse	esellsch	aft mbH		Country	Germany	1						
Brand (optional)	Ako Tec	uuktionse	,cocnocin	are morr			www.a		П					
Street, street number	Grundmühle	enweg 3				E-mail	info@a							
Postal Code / City, province		Angermi	ünde			Tel/Fax	_			0)3212 12 7	76 490			
Collector Type (flat plate gla	zed/un-glaz	ed: evacu	ate tubu	ılar)		Evacuate	ed tubula	r collecto	r					
Thermal / photo voltaic hybi						No								
Integration in the roof possib				on)		No								
							Pow	er outnu	t ner col	ector mo	dule			
		ıre \a)		_		(9								
		Aperture area (Aa)	Gross length	Gross width	Gross height	Gross area (AG)		Gb = 850 W/m ² ; Gd = 150 W/m ² Tm-Ta						
		Ap are	Gre	Gre	Gro	Gre	0 K	10 K	30 K	50 K	70 K			
Collector name		m²	mm	mm	mm	m²	W	W	W	W	W			
OEM Vario 3000-30 hp		4.46	2 170	2 253	115	4.89	2 376	2 310	2 177	2 044	1 911			
OEM Vario 2000-20 hp		2.95	2 170	1 490	115	3.23	1 571	1 527	1 440	1 352	1 264			
OEM Vario 1000-10 hp OEM Vario 500-5 hp		1.47 0.73	2 170 2 208	740 370	115 115	1.61 0.82	780 390	759 379	715 357	671	628 314			
OEIVI VAITO 300-3 TIP		0.73	2 208	370	113	0.82	390	3/9	337	336	314			
		 		 		ļ				\longmapsto				
		 		-						-				
		†		†										
Performance test method			Liquid h	eating col	llector - q	uasi-dyn	amic - ou	tdoor						
Performance parameters rel	lated to ape	rture	η0b	c1	c2	c3	c4	c6	Kθd					
Units			-	W/(m ² K)	$W/(m^2K^2)$	J/(m³K)	-	s/m	-					
Test results - Flow rate and	fluid see not	e 1	0.514	1.489	0.000	0.000	0.000	0.000	1.242					
Bi-directional incidence ang	le	Yes			Кθ	values a	re obligat	orv for 5	0°.					
Incidence angle modifiers K6		Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°			
transversal direction	` '	Κθ(θΤ)	1.33	1.36	1.17	1.28	1.23	1.17	1.03		0.00			
Incidence angle modifiers K6	θ(θL)	Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°			
longitudinal direction		Κθ(θL)	1.00	1.00	0.99	0.98	0.97	0.94	0.88		0.00			
Stagnation temperature - W	eather cond	itions see	note 2				Tstg		158	°C				
Effective thermal capacity							ceff = C/	Ag	9.97	kJ/(m²K)				
Max. intende operation tem	noraturo - c	oo noto 2							160	°C				
iviax. ilitellue operation tell	iperature - s	ee note 5												
							Tmax,op			kPa				
Max. operation pressure - se							pmax,op	l	1000	area				
Pressure drop table - for a co	ollector fam	ly, the va	lues sha	ll be for t	he modu	le with h	pmax,op	l	1000					
Pressure drop table - for a co	ollector fami kg/(s m²)	ly, the va	lues sha	ll be for t	he modu	le with h	pmax,op	l	1000					
Pressure drop table - for a co	ollector fam	ily, the va	lues sha	ll be for t	he modu	le with h	pmax,op	ı	1000					
Pressure drop table - for a co	ollector fami kg/(s m²)	ily, the va	lues sha	ll be for t	he modu Link	le with h	pmax,op	ı	1000					
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory	ollector fam kg/(s m²) Pa	TÜV Rhe	inland Er	nergie und	Link		pmax,op	ı	1000					
Pressure drop table - for a co Flow rate Pressure drop, ΔP Optional weather data	ollector fam kg/(s m²) Pa	TÜV Rhe	inland Er uv.com	nergie und	Link		pmax,op	ı	1000					
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory	ollector fam kg/(s m²) Pa	TÜV Rhe www.t	inland Er uv.com 9_1000_10	nergie uno /st	Link	t GmbH	pmax,op	per m² a	1000					
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory Website Test report id. number	ollector fami kg/(s m²) Pa Location	TÜV Rhe www.t 21210919 21210919	inland Er uv.com 9_1000_10 la_3000_3	nergie und /st Ohp;	Link d Umwelt	t GmbH	pmax,op	per m² a	1000 perture					
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory Website Test report id. number During the test GDIF/GTOT w	ollector fami kg/(s m²) Pa Location	TÜV Rhe www.t 21210919 21210919	inland Er uv.com 9_1000_10	nergie uno /st	Link	t GmbH	pmax,op	per m² a	1000 perture					
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory Website Test report id. number During the test GDIF/GTOT was comments of testing laboratory	ollector fami kg/(s m²) Pa Location vas always bottory:	TÜV Rhe www.t 21210919 21210919 etween	inland Er uv.com 9_1000_10 la_3000_3 0.08	nergie und /st Ohp; Ohp and	Link d Umwelt 0.85	t GmbH Date of	pmax,op ighest ΔP	per m² a	all 2010-	-07-28				
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory Website Test report id. number During the test GDIF/GTOT w	ollector fami kg/(s m²) Pa Location vas always bottory:	TÜV Rhe www.t 21210919 21210919 etween	inland Er uv.com 9_1000_10 la_3000_3 0.08	nergie und /st Ohp; Ohp and	Link d Umwelt 0.85	t GmbH Date of	pmax,op ighest ΔP	per m² a	all 2010-	-07-28				
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory Website Test report id. number During the test GDIF/GTOT w Comments of testing labora The collector OEM Vario 240	ollector fami kg/(s m²) Pa Location vas always b tory:	TÜV Rhe www.t 21210919 21210919 etween	inland Er uv.com 9_1000_10 a_3000_3 0.08	nergie und /st Ohp; Ohp and rio 3000-3	Link d Umwelt 0.85	t GmbH Date of	pmax,op ighest ΔP	per m² a	all 2010-	-07-28				
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory Website Test report id. number During the test GDIF/GTOT was comments of testing laboratory	ollector fami kg/(s m²) Pa Location vas always b tory:	TÜV Rhe www.t 21210919 21210919 etween	inland Er uv.com 9_1000_10 a_3000_3 0.08	nergie und /st Ohp; Ohp and	Link d Umwelt 0.85	t GmbH Date of	pmax,op ighest ΔP	per m² a	all 2010-	-07-28 r.	9/0			
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory Website Test report id. number During the test GDIF/GTOT w Comments of testing laboratory The collector OEM Vario 240 Note 1 Flow rate Note 2 Irradiance, G = 1000	vas always betory: 0.022 W/m²; Amb	TÜV Rhe www.ti 21210919 21210919 etween tested as	inland Er uv.com 9_1000_10 a_3000_3 0.08	mergie und /st Ohp; Ohp and rio 3000-3	Link d Umwelt 0.85	t GmbH Date of	pmax,op ighest ΔP	per m² a	all 2010-	r.	9p			
Pressure drop table - for a conflow rate Pressure drop, ΔP Optional weather data Testing Laboratory Website Test report id. number During the test GDIF/GTOT w Comments of testing laborathe collector OEM Vario 240 Note 1 Flow rate	vas always betory: 0.022 W/m²; Amb	TÜV Rhe www.ti 21210919 21210919 etween tested as	inland Er uv.com 9_1000_10 a_3000_3 0.08	mergie und /st Ohp; Ohp and rio 3000-3	Link d Umwelt 0.85	t GmbH Date of	pmax,op ighest ΔP	per m² a	all 2010-	r.	ab			

Genau. Richtig.

Page 4/4

Annual collector output based on EN 12975 Test Results,	Licence Number	011-7S660 R
annex to Solar KEYMARK Certificate	Issued	28.08.2014

		Α	nnua	l colle	ector	outpu	ıt kW	h/mo	dule					
					Loca	tion ar	nd coll	ector t	tempe	rature	(Tm)			
		Athens	ς	Davos			Stockholm			١٨	/ürzbu	ırg		
Collector name			75°C	25°C							75°C			
OEM Vario 3000-30 hp	4 841	4 188	3 612	4 087	3 515	3 027	2 957	2 466	2 064	3 180	2 650	2 212		
OEM Vario 2000-20 hp	3 201	2 770	2 389	2 703	2 325	2 002	1 955	1 630	1 365	2 103	1 752	1 463		
OEM Vario 1000-10 hp	1 590	1 375	1 186	1 342	1 154	994	971	810	678	1 044	870	726		
OEM Vario 500-5 hp	795	688	593	671	577	497	485	405	339	522	435	363		

Collector mounting: Fixed or tracking Fixed; slope = latitude - 15° (rounded to nearest 5°)

Location	Latitude °	Gtot kWh/m²	Ta °C	Collector orientation or tracking mode
Athens	38	1 765	18.5	South, 25°
Davos	47	1 714	3.2	South, 30°
Stockholm	59	1 166	7.5	South, 45°
Würzburg	50	1 244	9.0	South, 35°

Gtot	Annual total irradiation on collector plane	kWh/m²
Та	Mean annual ambient air temperature	°C
Tm	Constant collector operating temperature (mean of in- and outlet temperatures)	°C

The calculation of the annual collector performance is performed with the official Solar Keymark spreadsheet tool ScenoCalc. The collector output is calculated hour by hour according to the efficiency parameters from the Keymark test using constant collector operating temperature (Tm). A detailed description of the calculations is available at http://www.sp.se/en/index/services/solar/ScenoCalc/Sidor/default.aspx.

DIN CERTCO • Alboinstraße 56 • 12103 Berlin, Germany
Tel: +49 30 7562-1131 • Fax: +49 30 7562-1141 • E-Mail: info@dincertco.de • www.dincertco.de

Datasheet version: 4.05, 2013-11-07 ScenoCalc version: Ver. 4.05 (Nov, 2013)

AkoTec

Not to be beaten in Quality and Performance

Explanation of Solar Keymark Certificate

For a quick and easy performance evaluation of a collector, you can read second or fourth page of the Solar Keymark Certificate. Here you can see expected annual collector yield depending on the location and the temperature difference between collector and ambient temperature. These values are determined by simulation considering standard location, position of the Sun and weather conditions. Orientation of the collectors is optimized in this simulation. The yield difference between collectors with power tube and standard tube is clearly visible here.

df collector with		Annual collector output kWh/module											
Standard tubes (page 2)		Location and collector temperature (Tm)											
			Davos			Stockholm			/ürzbu	rg			
Collector name	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	
OEM Vario 2400-30	4 124	3 491	2 865	3 424	2 836	2 289	2 484	1 995	1 558	2 688	2 162	1 685	
OEM Vario 1600-20	2 744	2 323	1 907	2 278	1 887	1 523	1 653	1 328	1 037	1 788	1 439	1 121	
OEM Vario 800-10	1 379	1 167	958	1 145	948	765	830	667	521	899	723	563	
OEM Vario 400-5	689	584	479	572	474	383	415	334	260	449	361	282	

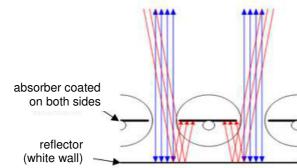
df collector with		A	nnua	l colle	ector	outpu	ıt kW	h/mo	dule					
Power tubes (page 4)		Location and collector temperature (Tm)												
		Athen	s		Davos		St	ockho	lm	V	/ürzbu	rg		
Collector name	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C		
OEM Vario 3000-30	5 231	4 559	3 926	4 426	3 809	3 250	3 192	2 667	2 215	3 458	2 893	2 399		
OEM Vario 2000-20	3 491	3 043	2 620	2 954	2 543	2 169	2 131	1 780	1 478	2 308	1 931	1 601		
OEM Vario 1000-10	1 740	1 516	1 306	1 472	1 267	1 081	1 062	887	737	1 150	962	798		
OEM Vario 500-5	870	758	653	736	633	541	531	444	368	575	481	399		

Figure 1: Comparison of yield per collector in Würzburg at T_m= 50°C

For the comparison between yield of different collectors, the gross area of the collector must be considered. Then we get the yield of collector per m² area of the collector.

Difference between efficiency of Power and standard collectors

In certificate, it can be seen that the efficiency of our collectors with power tubes is lower than that of our collectors with standard tubes.


Figure 2: Difference between efficiency of Power and Standard tube collectors at normal irradiation

AkoTec

Not to be beaten in Quality and Performance

The reason for this is, efficiency calculations are based on the aperture area at the normal irradiation. Aperture area for power tubes collector is greater than that of standard tubes collector. Very less light incidents on to the rear side of the extra absorber area because of normal irradiation and construction of collectors.

At the normal irradiation, most of the light is directly reflected from the reflector and light does not reach the lower absorber surface area.

Frequency: Short time, when Sun is exactly perpendicular to the surface of collector. At the inclined irradiation, the light is reflected from reflector on to the lower absorber surface area. Frequency: At all other positions of the Sun for the day.

Figure 3: Path of irradiation on power tube collector and different sun positions

Therefore, the collectors with power tubes have almost same peak power as standard tube collectors. Now the power tube collector with larger aperture area has almost the same peak power but with relatively low efficiency. When light incidents inclined to the surface of power tube collector, light is reflected on to the rear side of absorber surface area and thus the efficiency increases.

A reflector is required for power tube collector to achieve full power. A white façade or zinc coated sheet can be used as reflector. Brick can be used with special colour or coatings.

Attention: The reflector is not a part of the collector and is to be provided on the site. Yield of the collector can be achieved up to yield of standard tubes collector if reflector is not used.

You can see Influence of angle listed directly below efficiency in Keymark certificate.

Bi-directional incidence angle	Yes	Kϑ values are obligatory for 50°.								
Incidence angle modifiers Kθ(θT)	Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°
transversal direction	ΚΘ(ΘΤ)	1.35	1.17	1.25	1.20	1.22	1.15	0.83		0.00

Figure 4: Influence of angles on the df collector with power tubes

It describes the performance improvement with the change in irradiation angle. For example, power at 10° is 1.35 times higher than the normal irradiation.

_

¹ Aperture area describes the area of collector on which useful light incidents. For standard tubes it is only the area covered by the tubes. In case of power tubes, light also passes through area between two tubes and then it is reflected on to the rear side of the absorber surface area which can be used. Therefore, area between two tubes and the area on rear side of the absorber surface also constitutes aperture area. Therefore, it is greater than aperture area of standard tube collector without rear side absorber surface.