

ummary of EN 12975 Test Results,							e Numbe	er	011-7S471 R						
annex to Solar KEYMAR	K Certifica	ite				Issued			2014-0	8-28					
Company holding the	Ako Tec Pro	duktionse	esellscha	ift mbH		Country	Germany	1	<u> </u>						
Brand (optional)	Ako Tec	aantionse	,coenserie			Website	www.a	kotec.e	u						
Street, street number	Grundmühle	enweg 3				E-mail	info@a	kotec.e	u						
Postal Code / City, province	16278	Angermi	inde			Tel/Fax	49	(0)3331 2	29 66 88/ (0)3212 12	76 490				
Collector Type (flat plate glaz	zed/un-glaze	d: evacua	te tubula	ar)		Evacuate	ed tubular	collecto	r						
Thermal / photo voltaic hybic	d collector? (PVT colled	ctor)			No									
Integration in the roof possib	le ? (manufa	cturers de	eclaration	n)		No									
	•	I		Í			Power output per collector module								
		lre ∖a)				90	$Gb = 850 \text{ W/m}^2; Gd = 150 \text{ W/m}^2$								
		ertu a (/	oss gth	ath ss	oss ght	oss (/			Tm-Ta						
		Apo are	ng le	ĕ G	hei hei	Gro	0 K	10 K	30 K	50 K	70 K				
Collector name		m²	mm	mm	mm	m²	W	W	W	W	W				
OEM Vario 2400-30		3.05	2 164	2 250	120	4.87	2 367	2 306	2 172	2 023	1 859				
OEM Vario 1600-20		2.03	2 164	1 500	120	3.25	1 575	1 534	1 445	1 346	1 237				
OEM Vario 800-10		1.02	2 164	750	120	1.62	791	771	726	676	622				
		0.51	2 164	380	120	0.82	396	385	363	338	311				
Performance test method		-	Liquid h	eating col	lector - q	uasi-dyna	imic - outo	door							
Performance parameters rela	ated to apert	ure area	n0b	c1	c2	c3	c4	c6	Kθd						
Units	•		-	W/(m²K)	W/(m²K²)	J/(m ³ K)	-	s/m	-						
Test results - Flow rate and f	luid see note	1	0.774	1.936	0.006	0.000	0.000	0.000	1.015						
Bi-directional incidence angle	e modifiers?	Yes			Ki	י אמועפג מ	re obliaat	orv for 50)°.						
Incidence angle modifiers KØ	(0 T)	Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°				
transversal direction		Κθ(θΤ)	1.01	1.01	1.02	1.02	1.02	1.09	1.12		0.00				
Incidence angle modifiers K0	(OL)	Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°				
longitudinal direction		KƏ(ƏL)	1.00	1.00	0.99	0.98	0.97	0.94	0.88		0.00				
Stagnation temperature - We	eather condit	tions see	note 2				Tstg		191.9	°C					
Effective thermal capacity							ceff = C//	٩g	12.87	kJ/(m²K)					
Max. intende operation tem	perature - se	e note 3					Tmax.op	<u> </u>	300	°C					
Max. operation pressure - se	e note 3						pmax.op		1000	kPa					
Pressure drop table - for a co	llector family	v. the valu	ues shall	be for the	module	with high	est AP pe	r m ² ape	rture area	3					
Flow rate	$kg/(s m^2)$	0.014	0.028	0.042	0.056	0.083	0.111	0.139	0.167						
Pressure drop, ΔP	Pa	509	1472	2890	4762	9870	16796	25540	36102						
Ontional weather data	Location				Link										
Testing Laboratory	Location	TÜV Rhe	inland En	ergie und		GmhH									
Website		www.t	uv.com	/st		GIIIDII									
Test report id. number		2120937	0b_2400	2120937	0b_400;	Date of	test repor	t	all 2010-	07-28					
During the test GDIF/GTOT w	as alwavs be	tween	0.08	and	0.85	Î									
Comments of testing laborat	orv														
*The collector was tested wit	h a black bac	ckside she	et to mir	imize bac	skside ref	lectivity.	The tester	d collecto	r was bui	ld with th	e so				
called Narva power tube with	n backside co	ating. If th	ne standa	rd tube w	vith only f	front side	coating w	/ill be use	ed. the ou	tput					
performance will be the same	e as for the O	EM Vario	2400-30	type test	, ed with a	black bad	ckside she	et. An ad	ditional t	hermal					
, performance test with the co	llector OEM	Vario 300	0-30 usin	g a high e	efficiency	backside	reflector	is given o	n page 3	and 4.					
				-					-						
Note 1 Flow rate	0.020	kg/(s m²)	Fluid	Water				5-ray	10: 1	an . V	ab				
							1	Energie	nd prova	GmbH					
Note 2 Irradiance, G = 1000	W/m²; Ambi	ent temp	erature,	Ta=30 °C		An Braken Stein									
Note 3 Given by manufactur	rer						50	D.	51105 KO	113					
								Datashee	et version:	4.05, 2013	3-11-07				
			A 11 1		- 4044	2.0									

DIN CERTCO • Alboinstraße 56 • 12103 Berlin, Germany

Tel: +49 30 7562-1131 • Fax: +49 30 7562-1141 • E-Mail: info@dincertco.de • www.dincertco.de

Annual collector output based on EN 12975 Test Results,	Licence Number	011-7S471 R
annex to Solar KEYMARK Certificate	Issued	28.08.2014

		A	nnua	l colle	ector	outpu	ıt kW	h/mo	dule					
					Locat	tion ar	nd coll	ector 1	empe	rature	e (Tm)			
		Athen	s		Davos	;	St	ockho	m	W	/ürzbu	Irg		
Collector name	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C		
OEM Vario 2400-30	4 124	3 491	2 865	3 424	2 836	2 289	2 484	1 995	1 558	2 688	2 162	1 685		
OEM Vario 1600-20	2 744	2 323	1 907	2 278	1 887	1 523	1 653	1 328	1 037	1 788	1 439	1 121		
OEM Vario 800-10	1 379	1 167	958	1 145	948	765	830	667	521	899	723	563		
OEM Vario 400-5	689	584	479	572	474	383	415	334	260	449	361	282		

Collector mounting: Fixed or tracking

Fixed; slope = latitude - 15° (rounded to nearest 5°)

Overview of locations												
Location	Latitude °	Gtot kWh/m²	Ta ℃	Collector orientation or tracking mode								
Athens	38	1 765	18.5	South, 25°								
Davos	47	1 714	3.2	South, 30°								
Stockholm	59	1 166	7.5	South, 45°								
Würzburg	50	1 244	9.0	South, 35°								

Gtot	Annual total irradiation on collector plane	kWh/m²
Ta	Mean annual ambient air temperature	°C
Tm	Constant collector operating temperature (mean of in- and outlet temperatures)	°C

The calculation of the annual collector performance is performed with the official Solar Keymark spreadsheet tool ScenoCalc. The collector output is calculated hour by hour according to the efficiency parameters from the Keymark test using constant collector operating temperature (Tm). A detailed description of the calculations is available at http://www.sp.se/en/index/services/solar/ScenoCalc/Sidor/default.aspx.

DIN CERTCO • Alboinstraße 56 • 12103 Berlin, Germany Tel: +49 30 7562-1131 • Fax: +49 30 7562-1141 • E-Mail: info@dincertco.de • www.dincertco.de

Summ	nary of EN 12975		Licence Number 011-75471 R												
annex	to Solar KEYMA	RK Certific	ate				Issued			2014-0	8-28				
Compa	ny holding the	Ako Tec Pro	duktions	zesellscha	aft mbH		Country	German	/						
Brand (optional)	Ako Tec		,			Website	www.a	kotec.e	u					
Street,	street number	Grundmühle	enweg 3				E-mail	info@a	kotec.e	eu					
Postal (Code / City, province	16278	Angermi	inde			Tel/Fax	49	(0)3331 2	9 66 88/ (0)3212 12	76 490			
Collecto	or Type (flat plate gla	zed/un-glaz	ed; evacu	ate tubu	lar)		Evacuate	ed tubula	r collecto	r					
Therma	al / photo voltaic hybi	d collector?	PVT colle	ector)			No	No							
Integra	tion in the roof possil	ble ? (manufa	acturers o	declaratio	on)		No								
								Pow	er outpu	per collector module					
			ure Aa)	(Va)			AG)	Gb) = 850 W	//m²; Gd :	= 150 W/	m²			
			ert ea (oss ngth	oss dth	oss ighi	oss ea (Tm-Ta					
			Ap are	Gr ler	<u>v</u> i Vi	Gr he	<u>ar</u>	0 K	10 K	30 K	50 K	70 K			
Collecto	r name		m²	mm	mm	mm	m²	W	W	W	W	W			
OEM Va	ario 3000-30		4.39	2 164	2 250	120	4.87	2 570	2 504	2 366	2 222	2 070			
	ario 2000-20 ario 1000-10		2.93	2 164	1500	120	3.25	1 / 15	16/1	15/9	1 483	1 382			
OEM Va	ario 500-5		0.73	2 164	380	120	0.82	427	416	393	369	344			
			0.70	2 20 1					.120	000		0			
<u> </u>															
_	<u> </u>														
Perform	nance test method			Liquid he	eating col	lector - c	uasi-dyn	amic - out	tdoor		1	1			
Perforn	nance parameters re	lated to aper	ture	η0b	c1	c2	c3	c4	c6	Kθd					
Units	ulto Flow rate and	fluid coo not	<u>_ 1</u>	-	W/(m²K)	W/(m²K²)	J/(m ³ K)	-	s/m	-					
Test res	suits - Flow rate and	ilula see not	e 1	0.559	1.485	0.002	0.000	0.000	0.000	1.314					
Bi-direc	tional incidence ang	le	Yes	100		Kč	t values are obligatory for 50°.								
Inciden	ce angle modifiers K	9(0T)	Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°			
transve	ersal direction	2/01)	KO(OI)	1.35	20°	1.25	1.20 40°	1.22	1.15	0.83	80°	0.00			
longitu	dinal direction	5(0L)	Angle	10	20	30	40	50	0.94	70	80	90			
Stagnat	tion tomporature M	laathar cond	itions sos	1.00	1.00	0.55	0.50	U.ST	0.54	101.0	°C	0.00			
Stagnat			110113 366	note 2				Isig	A -	191.9	L.1.//				
Effectiv	e thermal capacity							cerr = C/I	Ag	8.426	KJ/(M ⁻ K)				
Max. in	tende operation tem	perature - se	ee note 3					Tmax,op		300	°C				
Max. o	peration pressure - se	ee note 3						pmax,op		1000	kPa				
Pressur	e drop table - for a c	ollector fami	ly, the va	lues shal	l be for th	ne modu	le with hi	ghest ΔP	per m² a	perture a	rea				
Flow ra	te	kg/(s m²)													
Pressur	e drop, ΔP	Ра													
Optiona	al weather data	Location				Link									
Testing	Laboratory		TÜV Rhe	inland Er	nergie und	d Umwel	t GmbH								
Websit	e		www.t	uv.com	/st						07.00				
Test rep	port id. number		212093	70c_3000	; 212093	70c_500	Date of	test repo	rt	all 2010-	07-28				
During	the test GDIF/GTOT v	vas always be	etween	0.08	and	0.85									
Comme	ents of testing labora	tory:													
The col	lector OEM Vario 240	0-30 was tes	ted as OE	M Vario	3000-30 \	with a hig	gh efficier	ncy backsi	ide reflec	tor.					
Note 1	Flow rate	0.028	kg/(s m²)	Fluid	Water				- it	Bhainh	rd at	⁹ p			
Note 2	Irradiance C = 1000	W/m2. Ame	iont tom	orations	Ta-20 %	~			Energie	Ind profit	GmbH				
ivote 2	in radiance, G = 1000	w/m-; Amb	ient tem	Jerature	, ra=30 °(-			LA	Grandenste	in				
Note 3	Given by manufactu	rer						cxa	D	- 51105 Kö	in				
	•								Datashee	et version:	4.05, 2013	3-11-07			
							00 D . !!								
		DIN CER		Alboinst	raise 56	• 121	J3 Berli	n, Germ	nany			_			
Te	el: +49 30 7562-1	131 • Fax:	+49 30	7562-1	141 • E	-Mail: i	nfo@di	ncertco	.de ● w	/ww.dir	certco.	de			

Annual collector output based on EN 12975 Test Results,
annex to Solar KEYMARK CertificateLicence Number011-75471 RIssued28.08.2014

		A	nnua	l colle	ector	outpu	ıt kW	h/mo	dule						
	Location and collector temperature (Tm)														
		Athens Davos				Stockholm			Würzburg						
Collector name	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C			
OEM Vario 3000-30	5 231	4 559	3 926	4 426	3 809	3 250	3 192	2 667	2 215	3 458	2 893	2 399			
OEM Vario 2000-20	3 491	3 043	2 620	2 954	2 543	2 169	2 131	1 780	1 478	2 308	1 931	1 601			
OEM Vario 1000-10	1 740	1 516	1 306	1 472	1 267	1 081	1 062	887	737	1 150	962	798			
OEM Vario 500-5	870	758	653	736	633	541	531	444	368	575	481	399			

Collector mounting: Fixed or tracking

Fixed; slope = latitude - 15° (rounded to nearest 5°)

	Overview of locations													
Location	Latitude °	Gtot kWh/m²	Ta °C	Collector orientation or tracking mode										
Athens	38	1 765	18.5	South, 25°										
Davos	47	1 714	3.2	South, 30°										
Stockholm	59	1 166	7.5	South, 45°										
Würzburg	50	1 244	9.0	South, 35°										

Gtot	Annual total irradiation on collector plane	kWh/m²
Ta	Mean annual ambient air temperature	°C
Tm	Constant collector operating temperature (mean of in- and outlet temperatures)	°C

The calculation of the annual collector performance is performed with the official Solar Keymark spreadsheet tool ScenoCalc. The collector output is calculated hour by hour according to the efficiency parameters from the Keymark test using constant collector operating temperature (Tm). A detailed description of the calculations is available at http://www.sp.se/en/index/services/solar/ScenoCalc/Sidor/default.aspx.

DIN CERTCO • Alboinstraße 56 • 12103 Berlin, Germany Tel: +49 30 7562-1131 • Fax: +49 30 7562-1141 • E-Mail: info@dincertco.de • www.dincertco.de

AKOTEC

Explanation of Solar Keymark Certificate

For a quick and easy performance evaluation of a collector, you can read second or fourth page of the Solar Keymark Certificate. Here you can see expected annual collector yield depending on the location and the temperature difference between collector and ambient temperature. These values are determined by simulation considering standard location, position of the Sun and weather conditions. Orientation of the collectors is optimized in this simulation. The yield difference between collectors with power tube and standard tube is clearly visible here.

df collector with	llector with Annual collector output kWh/module														
Standard tubes (page 2)		Location and collector temperature (Tm)													
		Athens Davos Stockholm Würzburg													
Collector name	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C			
OEM Vario 2400-30	4 124	3 491	2 865	3 424	2 836	2 289	2 484	1 995	1 558	2 688	2 162	1 685			
OEM Vario 1600-20	2 744	2 323	1 907	2 278	1 887	1 523	1 653	1 328	1 037	1 788	1 439	1 121			
OEM Vario 800-10	1 379	1 167	958	1 1 4 5	948	765	830	667	521	899	723	563			
OEM Vario 400-5	689	584	479	572	474	383	415	334	260	449	361	282			

df collector with		Annual collector output kWh/module													
Power tubes (page 4)		Location and collector temperature (Tm)													
		Athen	s		Davos		St	ockho	lm	V	Vürzbu	rg			
Collector name	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C			
OEM Vario 3000-30	5 231	4 559	3 926	4 4 2 6	3 809	3 250	3 192	2 667	2 215	3 458	2 893	2 399			
OEM Vario 2000-20	3 491	3 043	2 620	2 954	2 543	2 169	2 131	1 780	1 478	2 308	1 931	1 601			
OEM Vario 1000-10	1 740	1 516	1 306	1 472	1 267	1 081	1 062	887	737	1 150	962	798			
OEM Vario 500-5	870	758	653	736	633	541	531	444	368	575	481	399			

Figure 1: Comparison of yield per collector in Würzburg at Tm= 50°C

For the comparison between yield of different collectors, the gross area of the collector must be considered. Then we get the yield of collector per m² area of the collector.

Difference between efficiency of Power and standard collectors

In certificate, it can be seen that the efficiency of our collectors with power tubes is lower than that of our collectors with standard tubes.

Figure 2: Difference between efficiency of Power and Standard tube collectors at normal irradiation

<u>Akotec</u>

The reason for this is, efficiency calculations are based on the aperture area at the normal irradiation. Aperture area for power tubes collector is greater than that of standard tubes collector. Very less light incidents on to the rear side of the extra absorber area because of normal irradiation and construction of collectors.

At the normal irradiation, most of the light is directly reflected from the reflector and light does not reach the lower absorber surface area. Frequency: Short time, when Sun is exactly perpendicular to the surface of collector. At the inclined irradiation, the light is reflected from reflector on to the lower absorber surface area. Frequency: At all other positions of the Sun for the day.

Figure 3: Path of irradiation on power tube collector and different sun positions

Therefore, the collectors with power tubes have almost same peak power as standard tube collectors. Now the power tube collector with larger aperture area has almost the same peak power but with relatively low efficiency. When light incidents inclined to the surface of power tube collector, light is reflected on to the rear side of absorber surface area and thus the efficiency increases.

A reflector is required for power tube collector to achieve full power. A white façade or zinc coated sheet can be used as reflector. Brick can be used with special colour or coatings.

Attention: The reflector is not a part of the collector and is to be provided on the site. Yield of the collector can be achieved up to yield of standard tubes collector if reflector is not used.

You can see Influence of angle listed directly below efficiency in Keymark certificate.

Bi-directional incidence angle	Yes	Kϑ values are obligatory for 50°.											
Incidence angle modifiers K0(0T)	Angle	10°	20°	30°	40°	50°	60°	70°	80°	90°			
transversal direction	кө(өт)	1.35	1.17	1.25	1.20	1.22	1.15	0.83		0.00			

Figure 4: Influence of angles on the df collector with power tubes

It describes the performance improvement with the change in irradiation angle. For example, power at 10 $^{\circ}$ is 1.35 times higher than the normal irradiation.

¹ Aperture area describes the area of collector on which useful light incidents. For standard tubes it is only the area covered by the tubes. In case of power tubes, light also passes through area between two tubes and then it is reflected on to the rear side of the absorber surface area which can be used. Therefore, area between two tubes and the area on rear side of the absorber surface also constitutes aperture area. Therefore, it is greater than aperture area of standard tube collector without rear side absorber surface.